ex-vi/mapmalloc.c

571 lines
12 KiB
C

/*
* Memory allocation routines using mmap().
*
* Derived from mm-1.1.3 by Gunnar Ritter, Freiburg i. Br., Germany,
* September 2001.
*/
/* Sccsid @(#)mapmalloc.c 1.14 (gritter) 11/26/04 */
/* ====================================================================
* Copyright (c) 1999-2000 Ralf S. Engelschall. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by
* Ralf S. Engelschall <rse@engelschall.com>."
*
* 4. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by
* Ralf S. Engelschall <rse@engelschall.com>."
*
* THIS SOFTWARE IS PROVIDED BY RALF S. ENGELSCHALL ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RALF S. ENGELSCHALL OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <limits.h>
#ifdef __GLIBC__
/*
* Broken GNU libc will include stdlib.h with conflicting
* malloc() types otherwise.
*/
#ifndef __NO_STRING_INLINES
#define __NO_STRING_INLINES
#endif /* !__NO_STRING_INLINES */
#endif /* __GLIBC__ */
#include <string.h>
#include "config.h"
#ifdef LANGMSG
#include <nl_types.h>
extern nl_catd catd;
#else
#define catgets(a, b, c, d) (d)
#endif
#ifndef min_of
#define min_of(a, b) ((a) < (b) ? (a) : (b))
#endif
#ifndef max_of
#define max_of(a, b) ((a) > (b) ? (a) : (b))
#endif
#ifndef MAP_ANON
#ifdef MAP_ANONYMOUS
#define MAP_ANON MAP_ANONYMOUS
#endif
#endif
#ifndef MAP_FAILED
#define MAP_FAILED ((char *)-1)
#endif
#define MM_ALLOC_MINSIZE 8192
/*
* Define a union with types which are likely to have the longest
* *relevant* CPU-specific memory word alignment restrictions...
*/
union mem_word {
char (*mw_fp)(int);
char *mw_cp;
long mw_l;
double mw_d;
intptr_t mw_it;
};
typedef union mem_word mem_word;
#define SIZEOF_mem_word (sizeof(mem_word))
/*
* Define the structure used for memory chunks
*/
union mem_chunk_mc_u {
struct mem_chunk *mc_next; /* really used when it's free */
mem_word mc_base;/* virtually used when it's allocated */
};
struct mem_chunk {
size_t mc_size; /* physical size */
size_t mc_usize; /* user known size */
struct mem_pool *mc_pool;
union mem_chunk_mc_u mc_u;
};
typedef struct mem_chunk mem_chunk;
#define SIZEOF_mem_chunk (sizeof(mem_chunk)-sizeof(union mem_chunk_mc_u))
/*
* Define the structure describing a memory pool
*/
struct mem_pool {
struct mem_pool *mp_prev;
struct mem_pool *mp_next;
size_t mp_size;
size_t mp_offset;
int mp_users;
mem_chunk mp_freechunks;
mem_word mp_base;
};
typedef struct mem_pool mem_pool;
#define SIZEOF_mem_pool (sizeof(mem_pool)-SIZEOF_mem_word)
/*
* Define the structure describing a shared memory core area
* (the actual contents depends on the shared memory and
* semaphore/mutex type and is stripped down to a minimum
* required)
*/
struct mem_core {
size_t mo_size;
size_t mo_usize;
mem_word mo_base;
};
typedef struct mem_core mem_core;
#define SIZEOF_mem_core (sizeof(mem_core)-SIZEOF_mem_word)
typedef mem_pool MM;
static MM *mm_global = NULL;
#ifndef MAP_ANON
static int zerofd = -1;
#endif
extern int error(char *, ...);
/*
* Determine memory page size of OS
*/
static size_t
mm_core_pagesize(void)
{
static int pagesize = 0;
if (pagesize == 0)
#ifdef _SC_PAGESIZE
pagesize = sysconf(_SC_PAGESIZE);
#else
pagesize = 8192;
#endif
return pagesize;
}
/*
* Align a size to the next page or word boundary
*/
static size_t
mm_core_align2page(size_t size)
{
int psize = mm_core_pagesize();
return ((size) % (psize) > 0 ?
((size) / (psize) + 1) * (psize) : (size));
}
static size_t
mm_core_align2word(size_t size)
{
return ((1 + ((size - 1) / SIZEOF_mem_word)) * SIZEOF_mem_word);
}
/*
* Create a shared memory area
*/
static char
*mm_core_create(size_t usersize)
{
mem_core *mo;
char *area = ((char *)-1);
size_t size;
if (usersize <= 0) {
errno = EINVAL;
return NULL;
}
size = mm_core_align2page(usersize + SIZEOF_mem_core);
#ifdef MAP_ANON
if ((area = (char *)mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0)) == (char *)MAP_FAILED)
error(catgets(catd, 1, 243,
"failed to memory map anonymous area"));
#else /* !MAP_ANON */
if (zerofd == -1 && ((zerofd = open("/dev/zero", O_RDWR)) == -1
#ifdef F_SETFD
#ifndef FD_CLOEXEC
#define FD_CLOEXEC 1
#endif /* !FD_CLOEXEC */
|| fcntl(zerofd, F_SETFD, FD_CLOEXEC) == -1
#endif /* F_SETFD */
))
error(catgets(catd, 1, 244,
"failed to open /dev/zero"));
if ((area = (char *)mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE, zerofd, (off_t)0)) == (char *)MAP_FAILED)
error(catgets(catd, 1, 245,
"failed to memory map /dev/zero"));
#endif /* !MAP_ANON */
/*
* Configure the memory core parameters
*/
mo = (mem_core *)area;
mo->mo_size = size;
mo->mo_usize = usersize;
/*
* Return successfully established core
*/
return ((char *)&(mo->mo_base.mw_cp));
}
/*
* Create a memory pool
*/
static MM *
mm_create(MM *mmPrev, size_t usize)
{
MM *mm = NULL;
char *core;
size_t size;
/*
* defaults
*/
if (usize < MM_ALLOC_MINSIZE)
usize = MM_ALLOC_MINSIZE;
/*
* determine size
*/
size = usize + SIZEOF_mem_pool;
/*
* get a shared memory area
*/
if ((core = mm_core_create(size)) == NULL)
return NULL;
/*
* fill in the memory pool structure
*/
mm = (MM *)core;
mm->mp_prev = mmPrev;
mm->mp_next = NULL;
mm->mp_size = size;
mm->mp_offset = SIZEOF_mem_pool;
mm->mp_users = 0;
/*
* first element of list of free chunks counts existing chunks
*/
mm->mp_freechunks.mc_size = 0; /* has to be 0 forever */
mm->mp_freechunks.mc_usize = 0; /* counts chunks */
mm->mp_freechunks.mc_u.mc_next = NULL;
return mm;
}
/*
* Insert a chunk to the list of free chunks. Algorithm used is:
* Insert in sorted manner to the list and merge with previous
* and/or next chunk when possible to form larger chunks out of
* smaller ones.
*/
static void
mm_insert_chunk(MM *mm, mem_chunk *mcInsert)
{
mem_chunk *mc;
mem_chunk *mcPrev;
mem_chunk *mcNext;
mc = &(mm->mp_freechunks);
while (mc->mc_u.mc_next != NULL &&
(char *)(mc->mc_u.mc_next) < (char *)mcInsert)
mc = mc->mc_u.mc_next;
mcPrev = mc;
mcNext = mc->mc_u.mc_next;
if (mcPrev == mcInsert || mcNext == mcInsert)
error(catgets(catd, 1, 246,
"chunk of memory already in free list"));
if ((char *)mcPrev + (mcPrev->mc_size) == (char *)mcInsert &&
(mcNext != NULL &&
(char *)mcInsert + (mcInsert->mc_size) ==
(char *)mcNext)) {
/*
* merge with previous and next chunk
*/
mcPrev->mc_size += mcInsert->mc_size + mcNext->mc_size;
mcPrev->mc_u.mc_next = mcNext->mc_u.mc_next;
mm->mp_freechunks.mc_usize -= 1;
} else if ((char *)mcPrev + (mcPrev->mc_size) ==
(char *)mcInsert) {
/*
* merge with previous chunk
*/
mcPrev->mc_size += mcInsert->mc_size;
} else if (mcNext != NULL &&
(char *)mcInsert + (mcInsert->mc_size) ==
(char *)mcNext) {
/*
* merge with next chunk
*/
mcInsert->mc_size += mcNext->mc_size;
mcInsert->mc_u.mc_next = mcNext->mc_u.mc_next;
mcPrev->mc_u.mc_next = mcInsert;
} else {
/*
* no merging possible, so insert as new chunk
*/
mcInsert->mc_u.mc_next = mcNext;
mcPrev->mc_u.mc_next = mcInsert;
mm->mp_freechunks.mc_usize += 1;
}
}
/*
* Retrieve a chunk from the list of free chunks. Algorithm used
* is: Search for minimal-sized chunk which is larger or equal
* than the request size. But when the retrieved chunk is still a
* lot larger than the requested size, split out the requested
* size to not waste memory.
*/
static mem_chunk *
mm_retrieve_chunk(MM *mm, size_t size)
{
mem_chunk *mc;
mem_chunk **pmcMin;
mem_chunk *mcRes;
size_t sMin;
size_t s;
if (size == 0)
return NULL;
if (mm->mp_freechunks.mc_usize == 0)
return NULL;
/*
* find best-fitting chunk
*/
pmcMin = NULL;
sMin = mm->mp_size; /* initialize with maximum possible */
mc = &(mm->mp_freechunks);
while (mc->mc_u.mc_next != NULL) {
s = mc->mc_u.mc_next->mc_size;
if (s >= size && s < sMin) {
pmcMin = &(mc->mc_u.mc_next);
sMin = s;
if (s == size)
break;
}
mc = mc->mc_u.mc_next;
}
/*
* create result chunk
*/
if (pmcMin == NULL)
mcRes = NULL;
else {
mcRes = *pmcMin;
if (mcRes->mc_size >= (size + min_of(2 * size, 128))) {
/*
* split out in part
*/
s = mcRes->mc_size - size;
mcRes->mc_size = size;
/*
* add back remaining chunk part as new chunk
*/
mc = (mem_chunk *)((char *)mcRes + size);
mc->mc_size = s;
mc->mc_u.mc_next = mcRes->mc_u.mc_next;
*pmcMin = mc;
} else {
/*
* split out as a whole
*/
*pmcMin = mcRes->mc_u.mc_next;
mm->mp_freechunks.mc_usize--;
}
}
return mcRes;
}
/*
* Allocate a chunk of memory
*/
char *
malloc(size_t usize)
{
MM *mm;
mem_chunk *mc;
size_t size;
size = mm_core_align2word(SIZEOF_mem_chunk + usize);
if (mm_global == NULL && (mm_global = mm_create(NULL, size)) == NULL)
return NULL;
mm = mm_global;
nextpool:
if ((mc = mm_retrieve_chunk(mm, size)) != NULL) {
mc->mc_usize = usize;
mc->mc_pool = mm;
mm->mp_users++;
return (char *)&(mc->mc_u.mc_base.mw_cp);
}
if ((mm->mp_size - mm->mp_offset) < size) {
if (mm->mp_next != NULL ||
(mm->mp_next = mm_create(mm, size)) != NULL) {
mm = mm->mp_next;
goto nextpool;
}
error(catgets(catd, 1, 247, "out of memory"));
errno = ENOMEM;
return NULL;
}
mc = (mem_chunk *)((char *)mm + mm->mp_offset);
mc->mc_size = size;
mc->mc_usize = usize;
mc->mc_pool = mm;
mm->mp_offset += size;
mm->mp_users++;
return (char *)&(mc->mc_u.mc_base.mw_cp);
}
/*
* Free a chunk of memory
*/
void
free(char *ptr)
{
MM *mm;
mem_chunk *mc;
if (mm_global == NULL || ptr == NULL)
return;
mc = (mem_chunk *)((char *)ptr - SIZEOF_mem_chunk);
mm = mc->mc_pool;
mm_insert_chunk(mm, mc);
if (--mm->mp_users == 0) {
mem_core *mo = (mem_core *)((char *)mm - SIZEOF_mem_core);
if (mm == mm_global)
mm_global = mm->mp_next;
if (mm->mp_prev != NULL)
mm->mp_prev->mp_next = mm->mp_next;
if (mm->mp_next != NULL)
mm->mp_next->mp_prev = mm->mp_prev;
munmap((char *)mo, mo->mo_size);
}
}
/*
* Reallocate a chunk of memory
*/
char *
realloc(char *ptr, size_t usize)
{
size_t size;
mem_chunk *mc;
char *vp;
if (ptr == NULL)
return malloc(usize); /* POSIX.1 semantics */
mc = (mem_chunk *)((char *)ptr - SIZEOF_mem_chunk);
if (usize <= mc->mc_usize) {
mc->mc_usize = usize;
return ptr;
}
size = mm_core_align2word(SIZEOF_mem_chunk + usize);
if (size <= mc->mc_size) {
mc->mc_usize = usize;
return ptr;
}
if ((vp = malloc(usize)) == NULL)
return NULL;
memcpy(vp, ptr, usize);
free(ptr);
return vp;
}
/*
* Allocate and initialize a chunk of memory
*/
char *
calloc(size_t number, size_t usize)
{
char *vp;
if ((vp = malloc(number * usize)) == NULL)
return NULL;
memset(vp, 0, number * usize);
return vp;
}
/*ARGSUSED*/
void
cfree(char *p, size_t num, size_t size)
{
free(p);
}
#ifdef notdef
/*ARGSUSED*/
char *
memalign(size_t alignment, size_t size)
{
return NULL;
}
/*ARGSUSED*/
char *
valloc(size_t size)
{
return NULL;
}
char *
mallinfo(void)
{
return NULL;
}
int
mallopt(void)
{
return -1;
}
#endif /* notdef */
/*ARGSUSED*/
char *
poolsbrk(intptr_t val)
{
return NULL;
}